Characterization of compact and self-adjoint operators on free Banach spaces of countable type over the complex Levi-Civita field

نویسندگان

  • José Aguayo
  • Miguel Nova
  • Khodr Shamseddine
چکیده

Related Articles Operator extension of strong subadditivity of entropy J. Math. Phys. 53, 122204 (2012) Variational properties of the discrete variable representation: Discrete variable representation via effective operators J. Chem. Phys. 137, 064118 (2012) Symmetry of extremals of functional inequalities via spectral estimates for linear operators J. Math. Phys. 53, 095204 (2012) On the structure of positive maps: Finite-dimensional case J. Math. Phys. 53, 023515 (2012) Eigenfunctions decay for magnetic pseudodifferential operators J. Math. Phys. 52, 093709 (2011)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2th International Conference on P-adic Functional Analysis Abstracts of Talks

José Aguayo (Universidad de Concepción, Chile) and Miguel Nova (Universidad Catolica de la Santisima, Chile) and Khodr Shamseddine (University of Manitoba, Canada) Title: Characterization of Compact and self-adjoint operators on Free Banach spaces of countable type over the complex Levi-Civita field Abstract: Let C be the complex Levi-Civita field and let E be a free Banach space over C of coun...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013